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Following years of contamination, rivers may experience sig-
nificant levels of heavy metal pollution. Our research aims to 
pinpoint hazardous areas in these rivers. In our specific case, 
we focus on the floodplains of the Meuse River contaminated 
with zinc (Zn). Elevated zinc concentrations can lead to various 
health issues, including anemia, rashes, vomiting, and stomach 
cramping. However, due to limited sample data on zinc con-
centrations in the Meuse River, it becomes imperative to gen-
erate missing data in unidentified regions. This study employs 
universal Kriging in spatial data mining to investigate and pre-
dict unknown zinc pollutants. The semivariogram serves as a 
valuable tool for illustrating the variability pattern of zinc. To 
predict concentrations in unknown regions, the model captured 
is interpolated using the Kriging method. Employing regression 
with geographic weighting allows us to observe how stimu-
lus-response relationships change spatially. Various semivario-
gram models, such as Matern, exponential, and linear, are uti-
lized in our work. Additionally, we introduce Universal Kriging 
and geographically weighted regression. Experimental findings 
indicate that: (i) the Matern model, determined by calculating 
the minimum error sum of squares, is the most suitable theoret-
ical semivariogram model; and (ii) the accuracy of predictions 
is visually demonstrated by projecting results onto a real map.
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1. Introduction
“Spatial data mining” is the process of iden-

tify- ing interesting and undiscovered patterns 
in spa- tial data. Spatial data mining [12], is the 
application of data mining techniques [5] to spa-
tial data. Extracting meaningful and interesting 
patterns from spatial datasets is more challenging 
than extracting corresponding patterns from tra-
ditional numeric and categorical data due to their 
complexity. Research on spatial data min- ing has 
advanced significantly as a result of the blending 
of disciplines. [6] Geostatistics is a multidisci-
plinary field. [8] study that focuses on the spatial 
relationships between data and geology. It is ap-
plied in numerous disciplines, including geology, 
forestry, agriculture, and geography. [10,1] One of 
the main tools in geostatistics is Kriging, [4] an 
interpolation technique originally used to forecast 
mineral reserves. [11] The unobserved locations 
were filled in using the prediction results, and the 
gaps in particular areas were filled in by interpo-
lating the available data. [2] Though its original 
application was in geostatistics, kriging is a gener-
al statistical interpolation technique that finds use 
in numerous other areas, including climatology [9] 
and education [12].

In 1962, Matheron introduced Kriging, also re- 
ferred to as spatial Best Linear Unbiased Predic-
tion (BLUP), as a tribute to D. G. Krige, a mining 
engi- neer from South Africa. Kriging, as it turns 
out, is an interpolation method that provides an 
objective linear estimate of the values of a point 
or block. With extensive use of kriging, the on-
going surface (i.e., estimation at each location in 
the study area) of related variables has been de-
veloped. There are different types of Kriging, 
depending on the sta- tionarity assumption and 
the stochastic properties of the random variables. 
Universal kriging (UK) is a spatial interpolation 
method that combines a deterministic model with 
a stochastic model. [7] It’s a variant of ordinary 
kriging under non-stationary conditions. It is often 
used on data with a significant spatial trend, such 
as a sloping surface. It relaxes the assumption of 
stationarity by allowing the mean of the values to 
differ in a deterministic way in different locations 
for example Meuse River floodplain. Kriging can 
be easily applied in scenarios where obtaining a

spatial datum proves to be expensive because of 
the small sample size (n). Zinc (Zn) is one of the 
primary metals that contaminate the floodplain 
of the Meuse River. As such, identifying the lo- 

cation of the zinc-containing region is essential. 
However, the Meuse River’s zinc concentration is 
only partially known, necessitating the generation 
of the missing data in unidentified regions. The 
Meuse River floodplain data needs to be applied 
with gstat and sp library in GStat-R to get a pre- 
diction index of pollutants in unobserved locations 
during the prediction computation using the Uni- 
versal Kriging method. The pollutant prediction 
index of GStat-R has a minimum calculated aver- 
age Kriging variance, which contributes to its ac- 
curacy. Additionally, it can show contours so that 
GStat-R can show the concentration and location 
of pollutants.

The remainder of this paper is organized as fol- 
lows: The next section will show the works done 
by previous researchers. Section 3, will outline 
Kriging methods and discuss Universal Kriging 
and Geographically weighted regression in detail. 
In section 4, we implement Universal Kriging and 
GWR to zinc pollutants in the Meuse River data- 
set. Experiment results which show the results of 
measurement and visualize it on a meuse map are 
presented in this section. Finally, the last section 
presents the main conclusions of this work.

2. Literature Survey
Spatial analysis encompasses a variety of sta-

tis- tical and geographic information systems 
(GIS) methodologies, with Kriging standing out 
as a fundamental technique in this field. Kriging 
en- ables the prediction of spatial patterns, such 
as the distribution of zinc, a prevalent contami-
nant in the Meuse River floodplain. In a study by 
[1], ordinary point kriging coupled with Gaussian, 
Exponential, and Spherical semi-variograms was 
proposed to predict undiscovered zinc pollutants. 
Their approach aimed to interpolate and forecast 
the presence of zinc through spatial data analysis. 
Conversely, another kriging technique, Co-Krig-
ing, was discussed in the work of [2]. This method 
predicts values at unobserved locations by consid-
ering spatially interconnected sample points and 
incorporating additional variables correlated with 
the primary variable. Co-Kriging is valuable not 
only for single variable predictions but also for 
simultaneous predictions involving multiple vari-
ables.

[3] proposed a machine learning-based approach 
utilizing the spatial features of coordinate informa-
tion for spatial estimation. Their method, employ-
ing Random Forest (RF) among other machine 
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learning algorithms, exhibited superior perfor-
mance compared to previous machine learning ap-
proaches and comparable results to Kriging. They 
emphasized the significance of re- trieved features 
with distinct spatial categorization properties, sug-
gesting improved efficiency in spa- tial estimation. 
Furthermore,[4] delved into the interpretability of 
predictors in spatial data science, examining the 
conditions that lead to accurate statistics when 
modeling with such predictors. Their study also in-
vestigated the possibility of establishing an infor-
mation horizon for scale and information content. 
In a related context, [5] introduced several spatial 
analysis techniques, encompassing Inverse Dis-
tance Weighting (IDW),Nearest Neighbor Inverse 
Distance Weighting (NNIDW), spline interpola-
tion, and various types of Kriging. They applied 
these techniques to derive terrain measurements, 

emphasizing their significance in spatial compo-
nent analysis.

In summary, these studies highlight diverse 
methodologies such as kriging variations, machine 
learning-based approaches, and the significance of 
different spatial analysis techniques for predicting 
and understanding spatial patterns. Whereas, we 
proposed different spatial analysis techniques to 
predict the unknown regions of zinc on a meuse 
map by using kriging methods and regression 
analysis (GWR).

3. Methods
 To use Kriging or optimal prediction techniques, 

we must ascertain the spatial correlation’s struc-
ture. This problem is known as the structural 
analysis problem in geostatistics, and it becomes 
important in the ensuing Kriging procedure. The 
accuracy of Kriging is determined by the functions 
that provide information about the found spatial 
correlation. Semivariograms must meet specific 
criteria to be classified as such. Typically, semi-
variograms are derived from observed datasets but 
may not inherently satisfy all the necessary crite-

ria. Therefore, it becomes essential to fit them to 
one of the theoretical models that adhere to these 
criteria. Once a theoretical semivariogram is cho-
sen, the next step involves employing Kriging 
techniques for spatial prediction. Additionally, we 
use a method known as geographically weighted 
regression shown in Fig. 1.

3.1 Theoretical Semivariogram
The semivariogram displays the spatial auto-

correlation of the measured sample points. After 
the locations are plotted, a model is fitted through 
each pair of locations. These models are frequent-
ly defined in terms of a handful of particular char-
acteristics. It quantifies how the variance between 
data points changes as a function of distance or lag 
between them.

The semivariogram at distance ℎ h is defined as:

    (1)

Where,
γ ̂(h) : semivariance at distance h
N(ℎ) : number of pairs of points separated by dis-

tance ℎ 
Z(xi+h)  and Z(xi) : values of the variable of inter-

est at points xi+h and xi,respectively
In general, an experimental semivariogram is 

not isotropic. Consistency across all orientations 
is known as isometropy. When generated from the 
observed dataset, it does not satisfy these require-
ments. The most well-known semivariograms with 
isotropic functions are exponential, linear, and 
matern models. These concepts Fitting the exper-
iment’s semivariogram to the models requires the 
application of three parameters, as indicated by the 
models: sill (c), range (a), and nugget (λ) in Fig. 2 
below.

A thorough description of every semivariogram 
model with all required properties fully filed is 

Fig. 1 Methodology
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given below :
3.1.1 Exponential Model
The spherical and exponential models share sim-

ilarities in how spatial variability gradually ap-
proaches the sill. In both models, spatial depen-
dence is marked by the semivariance increasing 
exponentially and asymptotically approaching the 
sill as distance increases. This behavior indicates 
that the models exhibit continuous but non-differ-
entiable characteristics at the origin. The asymp-
totic approach to zero further characterizes these 
models, contributing to their representation of spa-
tial dependence.

 γ(h)=C.(1-exp(-h/a))+λ                               (2)   

Where,
Sill (c) : represents the variance of the variable
range (a) : signifies the distance at which spatial 

correlation is significant
Nugget (λ) : represents the variance at very short 

distances or measurement error
3.1.2 Linear Model
The linear variogram model describes spatial de-

pendence resulting in a linear increase in semivari-
ance with distance. It’s the simplest type of model 
without a plateau, meaning that the user has to ar-
bitrarily select the sill and range.

 γ(h)=C.h+λ                                                   (3)

Note : c : sill, λ : nugget
3.1.3 Matern Model
The Matérn variogram model is a generaliza-

tion of several theoretical variogram models. It 
incorporates a smoothness parameter and con-
trols continuity with a shape parameter. The shape 
parameter must be larger than zero. The Matérn 
covariance function is named after the Swedish 
forestry statistician Bertil Matérn. It specifies the 

covariance between two measurements as a func-
tion of the distance between the points at which 
they are taken.

(4)

Note: c: sill, a : range, λ : nugget, v : Smoothness 
parameter, it dictates the smoothness of the transi-
tion between the nugget, partial sill, and the range.

3.2 Universal Kriging
Kriging stands out among various methods that 

utilize a limited sample of data points to estimate 
the value of a variable across a continuous spatial 
field. This approach is particularly useful when 
dealing with variables that exhibit spatial variation 
across a random field, such as the average monthly 
concentration of ozone over a city or the availabil-
ity of healthy foods across neighborhoods. Unlike 
simpler methods like Gaussian decays, Linear Re-
gression, and Inverse Distance Weighted Interpo-
lation, Kriging leverages the spatial correlation be-
tween sampled points to interpolate values in the 
spatial field. What sets Kriging apart is its reliance 
on the spatial arrangement of empirical observa-
tions rather than an assumed model of spatial dis-
tribution. This approach allows for a more flexible 
and data-driven interpolation. Additionally, Krig-
ing provides estimates of the uncertainty associat-
ed with each interpolated value, offering valuable 
insights into the reliability of the predictions made 
across the spatial field.

 The different Kriging techniques have different 
levels of complexity and underlying assumptions. 
Universal kriging relaxes the assumption of sta-
tionarity by permitting the mean of the values to 
vary deterministically in various locations (for 
instance, as a result of a spatial trend). The only 
thing that stays constant across the field is the vari-
ance. This second-order stationarity (also known 
as “weak stationarity”) is often a relevant assump-
tion when taking environmental exposures into 
account. It involves incorporating a deterministic 

Fig. 2 Theoretical Semivariogram
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trend or spatially varying mean into the Kriging 
prediction model, in addition to the spatial auto-
correlation modeled through the semivariogram. 
For example, for zinc concentration data in the 
Meuse dataset, we can generate spatial predictions 
that integrate both the inherent spatial structure 
(modeled through the semivariogram) and any 
identifiable trend.

Under the assumptions: Universal Kriging can 
be expressed as a combination of the deterministic 
trend and the Kriging predictor. Z(u)=μ(u)+ε(u) 
Where Z(u) is the estimated value at the unsam-
pled location u. The deterministic trend compo-
nent μ(u) can take various functional forms and 
the kriging residual ε(u) is obtained by applying 
the kriging weights to the observed values and can 
be expressed as:

      (5) 

Where,
λi (u) : represents the kriging weights assigned to 

the sampled locations based on their spatial rela-
tionships with the prediction location u

Z(ui ) : denotes the observed value at location ui

u(ui) : value of the deterministic trend at location   
ui

Universal Kriging involves estimating both the 
parameters of the deterministic trend and the krig-
ing weights, ensuring that the prediction model ac-
counts for both the systematic trend and the spatial 
autocorrelation in the dataset.

3.3 Geographically weighted regression
Geographically Weighted Regression (GWR) is 

an analytical technique designed for spatial point 
data, facilitating the interpolation of missing val-
ues within the dataset. This method recognizes 
that the direction and strength of the relationship 
between a dependent variable and its predictors 
may vary due to contextual factors. In essence, 

GWR produces individual Ordinary Least Squares 
(OLS) equations that incorporate the dependent 
and explanatory variables of locations within the 
bandwidth of each target location for every point 
in the dataset. The user has the flexibility to man-
ually specify the bandwidth. By estimating re-
gression parameters locally for different locations 
within a study area, GWR effectively captures the 
spatial heterogeneity in relationships. This allows 
for a more nuanced understanding of how the as-
sociation between variables evolves across the 
spatial domain, acknowledging the impact of local 
context on the relationships under consideration.

 Yi=β0i+β1iX1i+β2iX2i+...+βpiXpi+εi             (6)

Where,
Yi : dependent variable at location i
X1i,X2i,…,Xpi  : independent variables at loca-

tion i
The coefficients β0i,β1i,β2i,…,βpi are estimat-

ed locally at each location, capturing the spatially 
varying relationships between the dependent and 
independent variables and εi represents the error 
term or residual at location i . GWR allows for 
the examination of spatially varying relationships 
and provides insights into the spatial heterogene-
ity of the studied phenomena, making it valuable 
for spatial analysis, prediction, and understanding 
local variations in relationships between variables 
across a geographical area.

4. Implementation
   4.1 Load Meuse dataset
   Four heavy metals that were measured in the top 

soil of a flood plain along the Meuse River creat-
ed the Meuse data set. According to the dispersed 
heavy metal distribution process, the contaminat-
ed sediment is deposited primarily in low-lying ar-
eas and along riverbanks, where it is carried by the 

Fig. 3 Zinc concentrations on 155 samples in the flood plains near the Meuse River
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river. The samples were taken near Stein village on 
the Meuse River’s floodplain. In addition to sever-
al soil and landscape variables, the point data set 
includes 155 samples with the highest concentra-
tions of soil heavy metals (ppm) shown in Fig. 3.

The R programming language was used to cre-
ate the Gstat-R library, which is used for one-, 
two-, or three-dimensional geostatistical model-
ing, prediction, and simulation. Gstat-R provides 

a wide range of spatial prediction options, from 
simple to universal Kriging. It changed from be-
ing a standalone program to an R library package 
with more features for controlling the processing 
of geographic data for geostatistical applications 
with updates in 2004. Thus, in this work, we apply 
ordinary point Kriging using the GStat-R and sp 
package.

   4.2.  Histogram Analysis
  To see the distribution of each variable, create a 

histogram. Evaluate the distribution’s shape to use 
universal kriging to predict the data. Fig. 4 shows 
a zinc concentration histogram plot.

4.3 Semivariogram models

 The resulting theoretical semivariogram models 
depend on the selection of three parameters: sill 
(c), range (a), and nugget (λ). From the plot, we 
can infer that nugget=0, the range is between 300 
and 700, and still is between 0.5 and 1. The best 
theoretical semivariogram models are then iden-
tified by fitting semivariogram models into ex-
perimental semivariograms based on these three 
parameters. In semivariogram model fitting, three 

models are used: linear, exponential, and matern. 
These fittings are shown in Figs. 5-7 below. More-
over, the best model can be determined using the 
smallest possible sum of squares.

The best semivariogram model with a minimum 
sum of square error (SSE) is the maternal model, 
highlighted in Table 1 below.

Using Universal Kriging and the Gstat-R pack-
age, we predict 3103 location points after choos-
ing a theoretical semivariogram. Table 2 below 
shows the Universal Kriging output summary:

Fig. 8(a)-(b)) shows a contour map of the expect-
ed zinc concentration and the plot of the standard 
error of variance, due to the usage of the ggplot 
function in the R programming language.

Fig. 4 Histogram of zinc concentration

Fig 5. Exponential semivariogram model fitting
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Furthermore, examining the outcomes on the map 
as demonstrated in Fig. 9 enables one to confirm 
that accuracy of the Universal Kriging forecasts. 
Since there is no groundtruth in the verification 
data, this method is used.

4.4 Geographically weighted Regression anal-
ysis(GWR)

GWR can be performed with the spgwr package 
in R. Fig. 10 displays a contour map of the expect-
ed zinc concentration and a plot of the standard 
error of variance, which illustrates the degree of 

Fig. 6 Linear Semivariogram model fitting

Fig. 7 Matern Semivariogram model fitting

Table 1 Minimum sum of squared error of the semivariogram models

Table 2 Output Summary of Universal Kriging Predictions

Exponential Linear Matern
1.628328e-05 1.494981e-05 1.093181e-05
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Fig. 8 Predictions of Universal Kriging (a) and Standard error of Universal Kriging (b)

Fig. 9 Map projection that uses colors to show areas with high and low zinc concentrations

Fig. 10 The predictions of zinc by using GWR (a) and Standard errors of the GWR (b)

(a)

(a)

(b)

(b)
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uncertainty and variability in the estimated zinc 
values across various study area locations as a re-
sult of using the ggplot function.

In a Geographically Weighted Regression (GWR) 
analysis, a comprehensive set of information is 
available, including a global model summary that 
encapsulates traditional regression results across 
the entire dataset. However, the distinctive feature 
of GWR lies in its local model statistics, which 
dissects the analysis into multiple localized mod-
els, each tailored to a specific geographic area.

Furthermore, the GWR model for predicting zinc 
concentrations utilizes a Gaussian kernel function 
with a 228-unit bandwidth. This approach gener-
ates coefficient maps that visually depict the spa-
tial variation of each variable’s effect across the 
study area. The analysis includes local residuals 
and p-values, offering insights into the model’s 
performance and significance at specific locations. 
Additionally, local parameter estimates provide a 
detailed view of the spatial variation in the regres-
sion coefficients, enhancing our understanding 
of how these coefficients change across different 
geographic regions. The model accuracy is shown 
as 86% of the R-squared value in Fig. 11 below.

5. Conclusion
Kriging proves to be a practical and effective 

method for filling gaps in missing spatial informa-
tion, providing minimal errors and significant pre-
dictions for unobserved locations based on nearby 
observed locations. Two key points highlight the 
effectiveness of this approach:

(i) The minimal error sum of squares is employed 

to determine the Matern model, a theoretical semi-
variogram model that closely aligns with the data 
according to experimental findings.

(ii) The results of the Kriging analysis can be 
projected onto a map, allowing for visual verifica-
tion of the accuracy of predictions.

Moreover, the analysis demonstrated an accuracy 
rate of 86% using Geographically Weighted Re-
gression (GWR). This success prompts consider-
ation of the extent to which other fields, such as 
climatology, epidemiology, and education, should 

adopt the stationarity assumption inherent in Uni-
versal Kriging and similar techniques—an area 
that warrants further investigation.
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