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Following years of contamination, rivers may experience sig-
nificant levels of heavy metal pollution. Our research aims to
pinpoint hazardous areas in these rivers. In our specific case,
we focus on the floodplains of the Meuse River contaminated
with zinc (Zn). Elevated zinc concentrations can lead to various
health issues, including anemia, rashes, vomiting, and stomach
cramping. However, due to limited sample data on zinc con-
centrations in the Meuse River, it becomes imperative to gen-
erate missing data in unidentified regions. This study employs
universal Kriging in spatial data mining to investigate and pre-
dict unknown zinc pollutants. The semivariogram serves as a
valuable tool for illustrating the variability pattern of zinc. To
predict concentrations in unknown regions, the model captured
is interpolated using the Kriging method. Employing regression
with geographic weighting allows us to observe how stimu-
lus-response relationships change spatially. Various semivario-
gram models, such as Matern, exponential, and linear, are uti-
lized in our work. Additionally, we introduce Universal Kriging
and geographically weighted regression. Experimental findings
indicate that: (i) the Matern model, determined by calculating
the minimum error sum of squares, is the most suitable theoret-
ical semivariogram model; and (ii) the accuracy of predictions
is visually demonstrated by projecting results onto a real map.
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1. Introduction

“Spatial data mining” is the process of iden-
tify- ing interesting and undiscovered patterns
in spa- tial data. Spatial data mining [12], is the
application of data mining techniques [5] to spa-
tial data. Extracting meaningful and interesting
patterns from spatial datasets is more challenging
than extracting corresponding patterns from tra-
ditional numeric and categorical data due to their
complexity. Research on spatial data min- ing has
advanced significantly as a result of the blending
of disciplines. [6] Geostatistics is a multidisci-
plinary field. [8] study that focuses on the spatial
relationships between data and geology. It is ap-
plied in numerous disciplines, including geology,
forestry, agriculture, and geography. [10,1] One of
the main tools in geostatistics is Kriging, [4] an
interpolation technique originally used to forecast
mineral reserves. [11] The unobserved locations
were filled in using the prediction results, and the
gaps in particular areas were filled in by interpo-
lating the available data. [2] Though its original
application was in geostatistics, kriging is a gener-
al statistical interpolation technique that finds use
in numerous other areas, including climatology [9]
and education [12].

In 1962, Matheron introduced Kriging, also re-
ferred to as spatial Best Linear Unbiased Predic-
tion (BLUP), as a tribute to D. G. Krige, a mining
engi- neer from South Africa. Kriging, as it turns
out, is an interpolation method that provides an
objective linear estimate of the values of a point
or block. With extensive use of kriging, the on-
going surface (i.e., estimation at each location in
the study area) of related variables has been de-
veloped. There are different types of Kriging,
depending on the sta- tionarity assumption and
the stochastic properties of the random variables.
Universal kriging (UK) is a spatial interpolation
method that combines a deterministic model with
a stochastic model. [7] It’s a variant of ordinary
kriging under non-stationary conditions. It is often
used on data with a significant spatial trend, such
as a sloping surface. It relaxes the assumption of
stationarity by allowing the mean of the values to
differ in a deterministic way in different locations
for example Meuse River floodplain. Kriging can
be easily applied in scenarios where obtaining a

spatial datum proves to be expensive because of
the small sample size (n). Zinc (Zn) is one of the
primary metals that contaminate the floodplain
of the Meuse River. As such, identifying the lo-
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cation of the zinc-containing region is essential.
However, the Meuse River’s zinc concentration is
only partially known, necessitating the generation
of the missing data in unidentified regions. The
Meuse River floodplain data needs to be applied
with gstat and sp library in GStat-R to get a pre-
diction index of pollutants in unobserved locations
during the prediction computation using the Uni-
versal Kriging method. The pollutant prediction
index of GStat-R has a minimum calculated aver-
age Kriging variance, which contributes to its ac-
curacy. Additionally, it can show contours so that
GStat-R can show the concentration and location
of pollutants.

The remainder of this paper is organized as fol-
lows: The next section will show the works done
by previous researchers. Section 3, will outline
Kriging methods and discuss Universal Kriging
and Geographically weighted regression in detail.
In section 4, we implement Universal Kriging and
GWR to zinc pollutants in the Meuse River data-
set. Experiment results which show the results of
measurement and visualize it on a meuse map are
presented in this section. Finally, the last section
presents the main conclusions of this work.

2. Literature Survey

Spatial analysis encompasses a variety of sta-
tis- tical and geographic information systems
(GIS) methodologies, with Kriging standing out
as a fundamental technique in this field. Kriging
en- ables the prediction of spatial patterns, such
as the distribution of zinc, a prevalent contami-
nant in the Meuse River floodplain. In a study by
[1], ordinary point kriging coupled with Gaussian,
Exponential, and Spherical semi-variograms was
proposed to predict undiscovered zinc pollutants.
Their approach aimed to interpolate and forecast
the presence of zinc through spatial data analysis.
Conversely, another kriging technique, Co-Krig-
ing, was discussed in the work of [2]. This method
predicts values at unobserved locations by consid-
ering spatially interconnected sample points and
incorporating additional variables correlated with
the primary variable. Co-Kriging is valuable not
only for single variable predictions but also for
simultaneous predictions involving multiple vari-
ables.

[3] proposed a machine learning-based approach
utilizing the spatial features of coordinate informa-
tion for spatial estimation. Their method, employ-
ing Random Forest (RF) among other machine
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learning algorithms, exhibited superior perfor-
mance compared to previous machine learning ap-
proaches and comparable results to Kriging. They
emphasized the significance of re- trieved features
with distinct spatial categorization properties, sug-
gesting improved efficiency in spa- tial estimation.
Furthermore,[4] delved into the interpretability of
predictors in spatial data science, examining the
conditions that lead to accurate statistics when
modeling with such predictors. Their study also in-
vestigated the possibility of establishing an infor-
mation horizon for scale and information content.
In a related context, [5] introduced several spatial
analysis techniques, encompassing Inverse Dis-
tance Weighting (IDW),Nearest Neighbor Inverse
Distance Weighting (NNIDW), spline interpola-
tion, and various types of Kriging. They applied
these techniques to derive terrain measurements,

—
meuse | for predictions |
dataset

—— L

Models

input
A

Spatial Data Mining for Prediction...

ria. Therefore, it becomes essential to fit them to
one of the theoretical models that adhere to these
criteria. Once a theoretical semivariogram is cho-
sen, the next step involves employing Kriging
techniques for spatial prediction. Additionally, we
use a method known as geographically weighted
regression shown in Fig. 1.

3.1 Theoretical Semivariogram

The semivariogram displays the spatial auto-
correlation of the measured sample points. After
the locations are plotted, a model is fitted through
each pair of locations. These models are frequent-
ly defined in terms of a handful of particular char-
acteristics. It quantifies how the variance between
data points changes as a function of distance or lag
between them.

The semivariogram at distance 4 h is defined as:
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Fig. 1 Methodology

emphasizing their significance in spatial compo-
nent analysis.

In summary, these studies highlight diverse
methodologies such as kriging variations, machine
learning-based approaches, and the significance of
different spatial analysis techniques for predicting
and understanding spatial patterns. Whereas, we
proposed different spatial analysis techniques to
predict the unknown regions of zinc on a meuse
map by using kriging methods and regression
analysis (GWR).

3. Methods

To use Kriging or optimal prediction techniques,
we must ascertain the spatial correlation’s struc-
ture. This problem is known as the structural
analysis problem in geostatistics, and it becomes
important in the ensuing Kriging procedure. The
accuracy of Kriging is determined by the functions
that provide information about the found spatial
correlation. Semivariograms must meet specific
criteria to be classified as such. Typically, semi-
variograms are derived from observed datasets but
may not inherently satisfy all the necessary crite-

P(h) =2 SV WZ(x; + h) — Z(x)]?

2N(h)

(M

Where,
v(h) : semivariance at distance h

N(%) : number of pairs of points separated by dis-
tance &

Z(x.+h) and Z(x,) : values of the variable of inter-
estat points x+h and x ,respectively

In general, an experimental semivariogram is
not isotropic. Consistency across all orientations
is known as isometropy. When generated from the
observed dataset, it does not satisfy these require-
ments. The most well-known semivariograms with
isotropic functions are exponential, linear, and
matern models. These concepts Fitting the exper-
iment’s semivariogram to the models requires the
application of three parameters, as indicated by the
models: sill (c), range (a), and nugget (1) in Fig. 2
below.

A thorough description of every semivariogram
model with all required properties fully filed is
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Fig. 2 Theoretical Semivariogram

given below :
3.1.1 Exponential Model

The spherical and exponential models share sim-
ilarities in how spatial variability gradually ap-
proaches the sill. In both models, spatial depen-
dence is marked by the semivariance increasing
exponentially and asymptotically approaching the
sill as distance increases. This behavior indicates
that the models exhibit continuous but non-differ-
entiable characteristics at the origin. The asymp-
totic approach to zero further characterizes these
models, contributing to their representation of spa-
tial dependence.

v(h)=C.(1-exp(-h/a))+A 2)

Where,
Sill (c) : represents the variance of the variable

range (a) : signifies the distance at which spatial
correlation is significant

Nugget (A) : represents the variance at very short
distances or measurement error

3.1.2 Linear Model

The linear variogram model describes spatial de-
pendence resulting in a linear increase in semivari-
ance with distance. It’s the simplest type of model
without a plateau, meaning that the user has to ar-
bitrarily select the sill and range.

y(h)=C.h+) 3)

Note : ¢ : sill, A : nugget
3.1.3 Matern Model

The Matérn variogram model is a generaliza-
tion of several theoretical variogram models. It
incorporates a smoothness parameter and con-
trols continuity with a shape parameter. The shape
parameter must be larger than zero. The Matérn
covariance function is named after the Swedish
forestry statistician Bertil Matérn. It specifies the

covariance between two measurements as a func-
tion of the distance between the points at which
they are taken.

y(h) =c. (1 - 2.-1-= - [:(L)l} . (x‘?ﬁ)" . (-.,'Th)) L3 (4)

Note: c: sill, a : range, A : nugget, v : Smoothness
parameter, it dictates the smoothness of the transi-
tion between the nugget, partial sill, and the range.

3.2 Universal Kriging

Kriging stands out among various methods that
utilize a limited sample of data points to estimate
the value of a variable across a continuous spatial
field. This approach is particularly useful when
dealing with variables that exhibit spatial variation
across a random field, such as the average monthly
concentration of 0zone over a city or the availabil-
ity of healthy foods across neighborhoods. Unlike
simpler methods like Gaussian decays, Linear Re-
gression, and Inverse Distance Weighted Interpo-
lation, Kriging leverages the spatial correlation be-
tween sampled points to interpolate values in the
spatial field. What sets Kriging apart is its reliance
on the spatial arrangement of empirical observa-
tions rather than an assumed model of spatial dis-
tribution. This approach allows for a more flexible
and data-driven interpolation. Additionally, Krig-
ing provides estimates of the uncertainty associat-
ed with each interpolated value, offering valuable
insights into the reliability of the predictions made
across the spatial field.

The different Kriging techniques have different
levels of complexity and underlying assumptions.
Universal kriging relaxes the assumption of sta-
tionarity by permitting the mean of the values to
vary deterministically in various locations (for
instance, as a result of a spatial trend). The only
thing that stays constant across the field is the vari-
ance. This second-order stationarity (also known
as “weak stationarity”) is often a relevant assump-
tion when taking environmental exposures into
account. It involves incorporating a deterministic
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trend or spatially varying mean into the Kriging
prediction model, in addition to the spatial auto-
correlation modeled through the semivariogram.
For example, for zinc concentration data in the
Meuse dataset, we can generate spatial predictions
that integrate both the inherent spatial structure
(modeled through the semivariogram) and any
identifiable trend.

Under the assumptions: Universal Kriging can
be expressed as a combination of the deterministic
trend and the Kriging predictor. Z(u)=p(u)+e(u)
Where Z(u) is the estimated value at the unsam-
pled location u. The deterministic trend compo-
nent p(u) can take various functional forms and
the kriging residual g(u) is obtained by applying
the kriging weights to the observed values and can
be expressed as:

e) =X, (). [Z(u;) — u(w;)] )

Where,

M. (u) : represents the kriging weights assigned to
the sampled locations based on their spatial rela-
tionships with the prediction location u

Z(u, ) : denotes the observed value at location u,

u(u,) : value of the deterministic trend at location
u

Universal Kriging involves estimating both the
parameters of the deterministic trend and the krig-
ing weights, ensuring that the prediction model ac-
counts for both the systematic trend and the spatial
autocorrelation in the dataset.

3.3 Geographically weighted regression

Geographically Weighted Regression (GWR) is
an analytical technique designed for spatial point
data, facilitating the interpolation of missing val-
ues within the dataset. This method recognizes
that the direction and strength of the relationship
between a dependent variable and its predictors
may vary due to contextual factors. In essence,

Spatial Data Mining for Prediction...

GWR produces individual Ordinary Least Squares
(OLS) equations that incorporate the dependent
and explanatory variables of locations within the
bandwidth of each target location for every point
in the dataset. The user has the flexibility to man-
ually specify the bandwidth. By estimating re-
gression parameters locally for different locations
within a study area, GWR effectively captures the
spatial heterogeneity in relationships. This allows
for a more nuanced understanding of how the as-
sociation between variables evolves across the
spatial domain, acknowledging the impact of local
context on the relationships under consideration.

Yi=p0i+p1iX1i+p2iX2i+...+PpiXpitei (6)

Where,
Yi : dependent variable at location i

X1i,X2i,...,Xpi : independent variables at loca-
tion 1

The coefficients B0i,f1i,p2i,...,fpi are estimat-
ed locally at each location, capturing the spatially
varying relationships between the dependent and
independent variables and &i represents the error
term or residual at location i . GWR allows for
the examination of spatially varying relationships
and provides insights into the spatial heterogene-
ity of the studied phenomena, making it valuable
for spatial analysis, prediction, and understanding
local variations in relationships between variables
across a geographical area.

4. Implementation
4.1 Load Meuse dataset

Four heavy metals that were measured in the top
soil of a flood plain along the Meuse River creat-
ed the Meuse data set. According to the dispersed
heavy metal distribution process, the contaminat-
ed sediment is deposited primarily in low-lying ar-
eas and along riverbanks, where it is carried by the

332000

meusedy
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180500 181500
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Fig. 3 Zinc concentrations on 155 samples in the flood plains near the Meuse River
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river. The samples were taken near Stein village on
the Meuse River’s floodplain. In addition to sever-
al soil and landscape variables, the point data set
includes 155 samples with the highest concentra-
tions of soil heavy metals (ppm) shown in Fig. 3.

The R programming language was used to cre-
ate the Gstat-R library, which is used for one-,
two-, or three-dimensional geostatistical model-
ing, prediction, and simulation. Gstat-R provides

—

The resulting theoretical semivariogram models
depend on the selection of three parameters: sill
(c), range (a), and nugget (A). From the plot, we
can infer that nugget=0, the range is between 300
and 700, and still is between 0.5 and 1. The best
theoretical semivariogram models are then iden-
tified by fitting semivariogram models into ex-
perimental semivariograms based on these three
parameters. In semivariogram model fitting, three

Histogram of Zinc Concentrations
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Fig. 4 Histogram of zinc concentration

a wide range of spatial prediction options, from
simple to universal Kriging. It changed from be-
ing a standalone program to an R library package
with more features for controlling the processing
of geographic data for geostatistical applications
with updates in 2004. Thus, in this work, we apply
ordinary point Kriging using the GStat-R and sp
package.

4.2. Histogram Analysis

To see the distribution of each variable, create a
histogram. Evaluate the distribution’s shape to use
universal kriging to predict the data. Fig. 4 shows
a zinc concentration histogram plot.

4.3 Semivariogram models

models are used: linear, exponential, and matern.
These fittings are shown in Figs. 5-7 below. More-
over, the best model can be determined using the
smallest possible sum of squares.

The best semivariogram model with a minimum
sum of square error (SSE) is the maternal model,
highlighted in Table 1 below.

Using Universal Kriging and the Gstat-R pack-
age, we predict 3103 location points after choos-
ing a theoretical semivariogram. Table 2 below
shows the Universal Kriging output summary:

Fig. 8(a)-(b)) shows a contour map of the expect-
ed zinc concentration and the plot of the standard
error of variance, due to the usage of the ggplot
function in the R programming language.

Exponential Variogram

T
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distance

Fig 5. Exponential semivariogram model fitting
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Linear Variogram
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Fig. 6 Linear Semivariogram model fitting
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Fig. 7 Matern Semivariogram model fitting

Table 1 Minimum sum of squared error of the semivariogram models

Exponential Linear Matern
1.628328e-05 1.494981e-05 1.093181e-05

Table 2 Output Summary of Universal Kriging Predictions

Coordinates Predicted_values Kriging variance
1 (181 1?40] 6.590687 0.18124505
b (181140,333700) 6688392 0.13251337
3 (181180,333700) 6566027 0.14607826
4 (181220,333700) 6443574 0.16155048
5 (181100,333660) 6.796248 0.08294027
3-1‘.03 ; :

Furthermore, examining the outcomes onthe map 4.4 Geographically weighted Regression anal-

as demonstrated in Fig. 9 enables one to confirm ysis(GWR)
that accuracy of the Universal Kriging forecasts. ~ GWR can be performed with the spgwr package
Since there is no groundtruth in the verification jp R. Fig. 10 displays a contour map of the expect-
data, this method is used. ed zinc concentration and a plot of the standard
error of variance, which illustrates the degree of
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Fig. 8 Predictions of Universal Kriging (a) and Standard error of Universal Kriging (b)
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Fig. 9 Map projection that uses colors to show areas with high and low zinc concentrations
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Fig. 10 The predictions of zinc by using GWR (a) and Standard errors of the GWR (b)
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uncertainty and variability in the estimated zinc
values across various study area locations as a re-
sult of using the ggplot function.

In a Geographically Weighted Regression (GWR)
analysis, a comprehensive set of information is
available, including a global model summary that
encapsulates traditional regression results across
the entire dataset. However, the distinctive feature
of GWR lies in its local model statistics, which
dissects the analysis into multiple localized mod-
els, each tailored to a specific geographic area.

call:

Spatial Data Mining for Prediction...

to determine the Matern model, a theoretical semi-
variogram model that closely aligns with the data
according to experimental findings.

(i) The results of the Kriging analysis can be
projected onto a map, allowing for visual verifica-
tion of the accuracy of predictions.

Moreover, the analysis demonstrated an accuracy
rate of 86% using Geographically Weighted Re-
gression (GWR). This success prompts consider-
ation of the extent to which other fields, such as
climatology, epidemiology, and education, should

gwr (formula = 2inc ~ dist + s0il + ffreq, data = meuse, bandwidth = 228,

hatmatrix = TRUE)
kernel function: gwr.Gauss
Fixed bandwidth: 228

summary of GwR coefficient estimates at data points:

Min. 1st Qu. Median  3rd Qu. Max. Global
X.Intercept. 490.972 754,490 859.657 100B.461 1731.987 B533.460
dist =4375.419 -1906.443 -1082.595 -574.289 184.974 -T97.015
soil12 -516.161 -196.595  -40.672 B9.968 F7T.ITO -223.578
50113 -391. 662 21.245 128.138 617.601 2256.339 44.439
ffreq? =1231.949 -361.349 -280.55%4 -205.2668 -20.238 -275.9B6
ffreqs3 -1731.295 -28B.127 -195.038 -116.427 663,199 -296.978

wumber of data points: 155

Effective number of parameters (residual: 2traceS - traces s5):

59.32127

effective degrees of freedom (resideal: 2traces - traces's): 95.67873
sigma (residual: 2traces - traces's): 171,8668

effective number of parameters (model: traces): 46,7098

effective degrees of freedom (model: traces): 108, 2902

Sigma (model: traces): 161.54%4
Sigma (ML): 135.0311

AICC (GWR p. 61, eg 2.33; p. 96, eq. 4.21): 2099.725

AIC (GWR p. 96, eq. 4.22): 2007.287
residual sum of squares: 2826179
Quasi-global r2: 0.8638016

Fig. 11 Output summary of Geographically weighted regression

Furthermore, the GWR model for predicting zinc
concentrations utilizes a Gaussian kernel function
with a 228-unit bandwidth. This approach gener-
ates coefficient maps that visually depict the spa-
tial variation of each variable’s effect across the
study area. The analysis includes local residuals
and p-values, offering insights into the model’s
performance and significance at specific locations.
Additionally, local parameter estimates provide a
detailed view of the spatial variation in the regres-
sion coefficients, enhancing our understanding
of how these coefficients change across different
geographic regions. The model accuracy is shown
as 86% of the R-squared value in Fig. 11 below.

5. Conclusion

Kriging proves to be a practical and effective
method for filling gaps in missing spatial informa-
tion, providing minimal errors and significant pre-
dictions for unobserved locations based on nearby
observed locations. Two key points highlight the
effectiveness of this approach:

(1) The minimal error sum of squares is employed

adopt the stationarity assumption inherent in Uni-
versal Kriging and similar techniques—an area
that warrants further investigation.
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